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Abstract

Direct numerical simulations (DNS) of turbulent pipe flow of
a Generalised Newtonian (GN) fluid at Reτ = 323 are analysed
to identify the region where GN rheology has the major influ-
ence. The flow domain is divided into two parts: in y+ < y+up
and y+ > y+up, with the viscosity modelled using a power-law
rheology for y+ < y+up and a uniform viscosity for y+ > y+up.
Values for y+up of 35 and 70 are considered. Results show that
beyond y+ = 70, the GN rheology has no significant effect on
the mean flow or turbulence statistics, and that the effect of GN
rheology is confined to the near wall. To understand these re-
sults, the turbulent kinetic energy budget of the GN fluid and a
Newtonian fluid at the same Reτ = 323 are compared. The com-
parison shows that the GN viscosity-dependent terms in the bal-
ance either vanish or do not show rheology dependence beyond
y+ = 70. The current results imply that in Reynolds averaged
Navier–Stokes and Large eddy simulations the GN rheology’s
effects can be taken care of by modifying the wall functions.

Introduction

Since Reynolds’ experiments in 1883, studies of wall bounded
turbulent flows have significantly contributed in our understand-
ing of turbulence. Pipe flow is a subset of wall bounded flows
which has the characteristic feature of an enclosed geometry,
making it easiest to realise in experiments compared to (for ex-
ample) channel flow [2]. Pipe flow also has direct industrial
relevance as pipeline transport is the most common method of
transporting fluids in industrial processes. There is a vast lit-
erature available on turbulent pipe flow of Newtonian fluids,
however, studies that aim to develop understanding in non-
Newtonian pipe flow turbulence are far less common.

Non-Newtonian fluids are very common in many industrial ap-
plications including mining, polymer processing, waste water
treatment etc., as well as in nature. They are different from
Newtonian fluids as they do not show a constant viscosity (shear
stress divided by shear rate). The viscosity of a non-Newtonian
fluid will often depend on shear rate, shear history and in some
applications they show partial elastic behaviour. Generalised
Newtonian (GN) fluids are a subclass of non-Newtonian fluids
for which the viscosity can be defined as a function of the in-
stantaneous shear rate alone. The viscosity of many fluids such
as fine particle suspensions, sewage sludge, paint, some poly-
meric solutions, some bodily fluids such as blood etc. can be
well approximated by the GN assumption. These are the fluids
of interest here.

The mathematical expression that relates shear stress (or alter-
natively viscosity) of a GN fluid to the local instantaneous shear
rate is termed a rheology model. The parameters of this model
are determined from the experimentally measured shear stress
versus shear rate curve (i.e. a shear rheogram). In this study we
use a power-law rheology model which is a simple and com-
mon model that nevertheless expresses the rheology of some
materials quite well. The power-law rheology model defines

the kinematic fluid viscosity as:

ν = Kγ̇
n−1 (1)

Here, γ̇ = (2si jsi j)
1/2 is the second invariant of the strain rate

tensor sss and K, n are the model parameters called the consis-
tency and flow index. Equation (1) represents shear-thinning
behaviour when n < 1 i.e. the fluid viscosity decreases with in-
creasing shear rate. For n > 1 shear-thickening behaviour is
observed and for n = 1.0 a Newtonian rheology is recovered.
Shear-thinning behaviour is the most widely observed GN phe-
nomena [3].

For turbulent pipe flow of Newtonian fluids, it is common to
split the flow domain into a viscous wall region (y+ < 50) and
an outer layer (y+ > 50) [4]. Here, y+ is the non-dimensional
distance from the wall defined using pipe radius R, fluid viscos-
ity ν and friction velocity uτ as y+ = uτR/ν. The fluid viscos-
ity is known to be important only in the viscous wall region.
However, in the case of a shear-thinning fluid where the fluid
viscosity increases with decreasing shear rate (and hence with
distance from the wall), the extent of the viscous region is not
well known.

DNS is a powerful tool in understanding wall bounded turbu-
lence. In this study we use a powerful feature of DNS, (i.e.
the ability model unreal physics), to identify the region where
shear-thinning behaviour is important. This is done by running
DNS in which shear-thinning rheology is used only in the near-
wall region and Newtonian rheology is used away from the wall.
The results will show if non-uniform viscosity and viscosity
fluctuations away from the wall have any effect on the overall
turbulent pipe behaviour, and confirm where they must be con-
sidered. This result will have implications for the development
of turbulence models suitable for GN fluids in higher Reynolds
numbers flows.

Computational Details

Numerical Method

We use the Semtex code [1] which is a spectral element-Fourier
DNS code [1] to solve the following governing equations.

∂uuu/∂t +uuu ·∇∇∇uuu =−∇∇∇p+∇∇∇ · τττ+ fff , with ∇∇∇ ·uuu = 0. (2)

Here, uuu is the velocity vector, p, τττ and fff are pressure, shear
stress tensor and body force, each divided by the fluid density.
We will refer to them as pressure, shear stress and body force
despite this scaling.. The shear stress τττ is defined using the GN
assumption as τττ = 2ν(γ̇)SSS.

In the current simulations the pipe is periodic, 10D long and
discretised with 288 Fourier modes in the axial direction. The
pipe cross-section is covered by 297 spectral elements that use
10th order Gauss-Lobatto-Legendre polynomials. Implemen-
tation of a pressure gradient in the Fourier direction is imple-
mented via the body force term by setting fz = ∂p/∂z. The
non-uniform viscosity of the non-Newtonian fluid is handled



by decomposing it into a spatially constant νre f and a spatially
varying component ν−νre f . The spatially constant component
νre f is treated implicitly whereas ν−νre f is treated explicitly in
time. For more details see [1] and [6].

Mesh Spacing and Simulation Parameters

We define the generalised and friction Reynolds numbers as:

ReG =UbD/νw Reτ = uτR/νw (3)

Here, D and R are pipe diameter and radius, Ub is the bulk ve-
locity (flow rate per unit area), uτ is the friction velocity de-
fined as uτ = (τw/ρ)1/2 where the mean wall shear stress is
τw = (D/4)∂p/∂z. In equation (3) the mean wall viscosity νw
is chosen as the viscosity scale as suggested in [7]. For a power-
law fluid νw is easily written as:

νw = (K1/n/ρ)(τw)
1−1/n (4)

The non-dimensional distance from the wall is defined as y+ =
(R−r)uτ/νw, where r is the radial distance from the pipe centre.
In the current simulations (ReG = 11000, Reτ = 323), the near
wall mesh spacing is ∆y+ = 1 and ∆(rθ)+ = 7. A uniform mesh
spacing of ∆z+ = 25 is used in the axial direction.

We consider three cases with decreasing width of the non-
Newtonian rheology domain. First we run the simulation where
PL rheology is assumed at all y+ (case I). The fluid vis-
cosity is modelled via equation 1 with the model parameters
K = 345.35× 10−6 Pa s−n and n = 0.6. In the other two PL
cases, we limit the non-Newtonian domain up to y+ = y+up (see
table 1) and beyond that use a uniform viscosity which is set
equal to the mean viscosity observed in case I at the same y+up.
An additional simulation is run with Newtonian rheology, i.e.
a constant viscosity that is set equal to the mean wall viscosity
νw in the PL simulations. A fixed axial forcing fz = 0.01165 N
m−1 is used in all simulations.

Case y+up νN/νw
I 323 –

II 70 2.6
III 35 2.0

Newt. – 1

Table 1: Upper limit of the non-Newtonian domain in different
cases. The pipe radius is R+ = 323 in wall units. y+up is the
upper limit of the non-Newtonian domain and νN is the fixed
viscosity used in case II and III beyond y+up. The mean wall vis-
cosity is fixed in wall simulations to νw = 8.33×10−5 m2s−1.

Results

In this section we compare the results of simulations with re-
stricted non-Newtonian rheology domain (II and III) with those
from the full non-Newtonian simulation I to identify the region
where the non-Newtonian rheology is important.

Mean Flow and Velocity Fluctuations

Profiles of the mean viscosity are shown in figure 1a, and as
set, a uniform viscosity is observed in simulations II and III for
y+ > y+up . Viscosity profiles below y+up are indistinguishable
from each other. It appears that the mean axial velocity profiles
for all three simulations collapse on a single curve (figure 1b).
However, a closer look (not shown) shows that the profile of
III deviates above the others for y+ < 30 and beyond that devi-
ates below. Profiles of the mean axial velocity gradient (figure
1c) for simulation III show deviation from the others largely

in the viscous sub-layer (y+ < 5). Unlike Newtonian fluids,
shear-thinning fluids do not follow the Newtonian law of wall
i.e. U+

z = y+ in the viscous sub-layer (∂U+
z /∂y+ 6= 1) (see the

inset plot in figure 1c). Instead, ∂U+
z /∂y+ increases slightly in

the viscous sub-layer as the fluid becomes more shear-thinning,
with the explanation being complex and tangential to the dis-
cussion here. Deviation between the U+

z profiles of the PL sim-
ulations and the Newtonian log-law is due to shear-thinning as
noted in [6, 7].
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Figure 1: Profiles of (a) the mean viscosity and (b) the mean
axial velocity plotted in wall units. Dotted lines in (b) show the
classical Newtonian law of wall U+

z = y+, U+
z = 2.5lny++5.5.

The effect of switching the rheology model is negligible on the
mean axial velocity profiles.

The effect of restricting PL rheology to the near wall region is
seen a little more clearly in the profiles of rms velocity fluctua-
tions (figure 2). The differences between I and II are very small
and seen only in the radial and the azimuthal velocity fluctua-
tions for y+ > 70. In contrast, all velocity fluctuation profiles of
III clearly deviate from I. The axial velocity fluctuation profile
starts to deviate in the viscous sub-layer itself but profiles of the
other components show deviation only for y+ > 20.

Mean Shear Stress

After using the Reynolds decomposition for velocity vvv = VVV +
vvv′, strain rate tensor sss = SSS+ sss′, kinematic viscosity ν = ν̄+ν′

and pressure p = P+ p′, the Reynolds averaged Navier–Stokes
equation for a GN fluid is written as:

VVV ·∇∇∇VVV = ∇∇∇P+∇∇∇ · (τττvvv + τττ
RRR + τττ

fff vvv) (5)

Here, τττvvv = 2νSSS is the mean viscous stress tensor, τττR =−vvv′vvv′ is
the Reynolds stress tensor and τττ fff vvv = 2ν′sss′ is an additional stress
term (turbulence viscous stress) which is non-zero only for non-
Newtonian fluids. The total mean shear stress τττ is given by the
sum of these three components. In the case of a pipe flow, only
the rz component of τττ survives and therefore, in the following
the subscript rz is dropped for clarity. In a pipe flow, the total



shear stress in the rz direction must be zero at the centreline and
τw at the wall, hence it is easy to show that τ+ = r/R which is
independent of the fluid rheology. Therefore, any change in one
component leads to change in others.

The mean viscous stress τv+ and the Reynolds stress τR+
pro-

files of I and II overlap but deviate from those of III for y+ < 5
and y+ > 30 (figure 3). The effect of restricting non-Newtonian
rheology in simulations II and III directly affects the turbu-
lence viscous stress τ f v+ . By forcing a Newtonian rheology
for y+ > y+up, we also force ν′ = 0 there. Therefore, τ f v+ van-
ishes for y+ > y+up and τv+ , τR+

change to keep the total mean
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Figure 2: Profiles of the rms velocity fluctuations in the (a) axial
direction (b) radial and the azimuthal direction (c) turbulence
kinetic energy k. Profiles of I and II almost overlap each other
but deviate from those of III.
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Figure 3: Profiles of the rz component of the mean viscous
stress τv+ , Reynolds stress τR+

and the turbulent viscous stress
τ f v+ plotted in wall units.

shear constant at a given y+. However, because τ f v+ has already
decayed to almost zero by y+ = 70, there are no noticeable dif-
ferences in the profiles of τv+ and τR+

between I and II.

Summary

Results presented in this section show that PL viscosity fluctua-
tions for y+ > 70 do not influence the results of the mean axial
velocity and velocity fluctuations to any notable extent.

Discussion

In figure 1b, we observed a higher mean axial velocity in III
compared to I and II which is due to a lower Reynolds stress
τR+

for III as seen in figure 3. The lower τR+
causes lesser

mean flow energy destruction (or turbulence production, dis-
cussed later) by τR+

in III compared to others and results in
higher mean flow kinetic energy K = (1/2)U2

z and hence higher
Uz in III than others.

In order to understand the changes to the turbulence kinetic en-
ergy profiles caused by restricting the PL rheology domain (fig-
ure 2c), we first compare the turbulence kinetic energy (TKE)
budget of a Newtonian and PL fluid (simulation I) at Reτ = 323.
After using the Reynolds decomposition (discussed earlier) an
equation for TKE k = (1/2)u′iu

′
i for a time-stationary turbulent

flow is written as:

1,A︷ ︸︸ ︷
U j

∂k
∂x j

=

2,P︷ ︸︸ ︷
−u′iu

′
jSi j +

{ 3,T︷ ︸︸ ︷
−

∂u′iu
′
iu
′
j

∂x j

4,Π︷ ︸︸ ︷
−

∂p′u′j
∂x j

5,D︷ ︸︸ ︷
+

∂(2ν̄s′i ju
′
i)

∂x j

}

6,ε︷ ︸︸ ︷
−2ν̄s′i js

′
i j +


7,ξnn︷ ︸︸ ︷

∂(2ν′u′iSi j)

∂x j
+

8,Dnn︷ ︸︸ ︷
∂(2ν′s′i ju

′
i)

∂x j


9,χnn︷ ︸︸ ︷

−2ν′s′i jSi j

10,εnn︷ ︸︸ ︷
−2ν′s′i js

′
i j (6)

Here, terms 1-6 are common for Newtonian and GN fluids but
terms 7-10 are non-zero only for GN fluids. In the case of a
homogeneous uni-directional pipe flow, term 1, the mean flow
advection A vanishes and the TKE budget is a balance amongst
terms 2–10. Turbulence receives energy from the mean flow
via term 2 (P , the turbulence production) which is spatially re-
distributed within the domain by terms 3–5 (i.e. the turbulence
transport (T ), pressure gradient work (Π) and mean viscous
transport (D)). Term 6 (ε, the mean viscous dissipation) rep-
resents the destruction of TKE due to the mean viscosity.

In the non-Newtonian terms 7–10, terms 7 (ξnn,the mean shear
turbulence transport) and 8 (Dnn, the turbulence viscous trans-
port) are again transport terms and these modify the turbu-
lence transport by the Newtonian terms 3–5. Similarly, terms
9 (χnn,the turbulence shear stress–mean strain contraction) and
10 (εnn, the turbulence viscous dissipation) modify the Newto-
nian dissipation ε depending on their sign. The modification of
TKE the budget by shear-thinning is discussed in [5]. Here, we
include only the results of the viscosity dependent terms 5–8.

All viscosity dependent transport terms D+, ξ+nn and D+
nn van-

ish beyond y+ = 30 and only the dissipation terms survive (fig-
ure 4). Although, the Newtonian dissipation ε shows rheology
dependence up to y+ = 200, the rheology effect is very small
beyond y+ = 70 (figure 4a). For the GN dissipation terms, χ+

nn
vanishes and ε+nn decays to almost zero by y+ = 70. We note
that χ+

nn and ε+nn are positive and therefore, both decrease the
total viscous dissipation. The non-Newtonian and Newtonian



dissipation terms when summed together, show rheology de-
pendence only for y+ < 70 (figure 4d).

In simulations II and III, the (unphysical) mean viscosity for
y+ > y+up will affect D+ and ε+ whereas forcing ν′ = 0 will
cause the non-Newtonian terms to vanish beyond y+up. Because
by y+ = 70 all viscosity dependent terms except ε+ decay to
almost zero and ε+ also show little rheology dependence, the
TKE budgets for simulations I and II will agree with each other.
In contrast, profiles of the TKE budget terms for III are ex-
pected to deviate from those of I because ε+ largely depends
on the fluid viscosity (and hence rheology) and ε+nn is still large
in the range 30 < y+ < 70. Because of the complex interaction
between transport terms in the TKE budget, profiles from III
are not expected to deviate from I exactly at the same location
where terms 5–8 of III show differences from those in I.

Summary

Comparison of viscosity dependent TKE budget terms of New-
tonian and the PL fluids shows that the PL rheology influences
TKE budget via fluid viscosity mainly for y+ < 70.

Conclusions

The current study is a step forward towards understanding pipe
flow turbulence of shear-thinning fluids. By exploiting the abil-
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Figure 4: Profiles of (a–c) the viscosity dependent turbulence
kinetic energy budget terms 5–8 (see equation (6)) and (d) their
sum plotted for a Newtonian (solid line) and PL fluid (dashed
lines). The rheology effects are mainly seen in y+ < 70.

ity of DNS to model physically impossible situations, the GN
rheology dependent region in turbulent pipe flow has been iden-
tified. Simulations are run with a restricted GN rheology do-
main and results show that modifying the fluid rheology be-
yond y+ = 70 has no significant effect on the mean flow and
first-order turbulence profiles. An analysis of the viscosity de-
pendent turbulent kinetic energy budget terms showed that the
shear-thinning rheology affects the turbulence kinetic energy
budget only for y+ < 70 at Reτ = 323.

The current study has direct application in rheology character-
isation for turbulent flow predictions and in developing turbu-
lence models for RANS and LES of shear-thinning fluids. Re-
sults from the current study support the argument presented in
[8] that DNS of turbulent pipe flow are very sensitive to the rhe-
ology characterisation at high shear rates which are found in the
near wall region. Rheology errors at the low shear rates which
occur away from the wall are unlikely to affect the overall turbu-
lent flow behaviour. This study also suggests that in RANS and
LES based numerical techniques, the effect of shear-thinning
could be accommodated by modifying the wall functions.
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